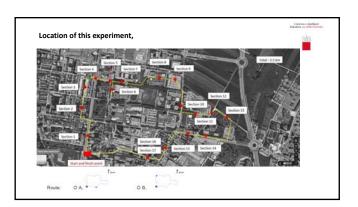
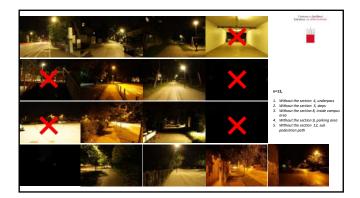
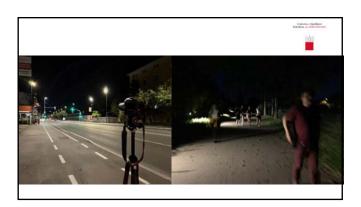
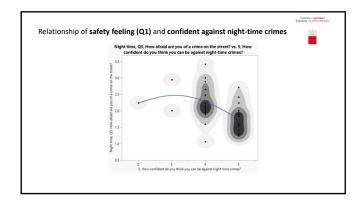
Thoretze a piegos

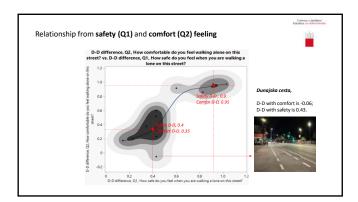

Preliminary study, Evaluate pedestrian's safety and comfort using the day-dark method

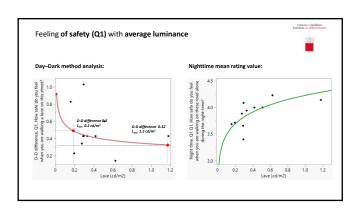
Lanlan WEI, Grega BIZJAK, Matej B. KOBAV

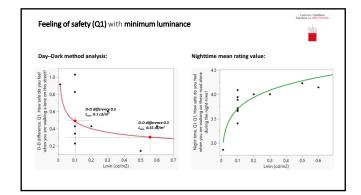

Faculty of Electrical Engineering University of Ljubljana, Ljubljana, Slovenia

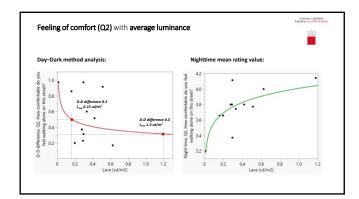

21.10.2022

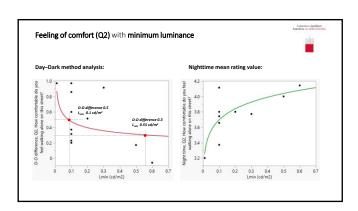

Day-Dark method? Good lighting is that which minimises the day—dark difference. In this method, participant ratings of safety and comfort in both daylight and dark conditions, the difference between these two ratings is plotted against lighting parameters to examine the effect of changes in lighting.




Section	Description of the road	Lamp type	CCT (K)	Ra	E _{see} (lx)	note	Lave	L _{min}	L _{max}	UO	UL (L _{ave} of midd column)
1	Main road	LED	3000	72	11.4		1.18	0.60	2.60	0.51	1.20
2	Residential area Residential area	LED LED	3000 2770	73 86	4.5	(Max 52)	0.29	0.10	0.90	0.35	0.36 0.29
4	Underpass	Fluore scent staining tube	2800	81	39		2.43	1.40	0.40	0.34	2.94
5	Steps	No lighting									
6	Narrower sub road	Son	2000	15	2		0.42	0.20	1.00	0.48	0.46
7	UL Campus area	LED	3400	76	4.4		0.51	0.30	0.90	0.59	0.53
8	UL Campus area UL parking area	LED No road lighting	4800	96	10.1		0.01 4.04				4.16
10	Public sub main road	Son	1950	23	9.3	(moon)	0.33	0.10	0.50	0.30	4.16
11	Public commercial area	LED	2550	80	0.5	(max 10)		0.10	0.90	0.34	4.16
12		No lighting+LED from the parking	4300	93	0.2		0.01	0.01	0.01		
13	Public side road Public sub main road	No road lighting LED	3300	70	0.1 (moon) 1.9		0.01	0.01	0.01	0.63	0.15
15	Public sub main road	LED	3000	72	11.3		0.10	0.10	1 30	0.80	0.15
16	Residential area	Son	1850	17	6.7		0.28	0.10	0.40	0.36	0.29
17	Residential area	Son	1850	11	5		0.20	0.10	0.30	0.51	0.20







Conclusion

Safety trend with average luminance,

- D-D difference is very flat decrease, when the L_{inve} from 0.2 cd/m² to 1.2 cd/m²;
 The D-D difference will remain around 0.3, even the luminance goes higher;
 When the D-D difference around 0.3, the L_{inve} is around 1.2 cd/m².

Comfort trend with average luminance,

- D-D difference is flat decrease, when the L_{ave} from 0.15 cd/m² to 1.2 cd/m²;
 The D-D difference will remain around 0.3, even the luminance goes higher;
 When the D-D difference around 0.3, the L_{ave} is around 1.2 cd/m².

Hvala vam Thank you very much.

Laboratory of Lighting and Photometry, Faculty of Electrical Engineering Tržaška cesta 25, SI-1000 Ljubljana, Slovenija / Slovenia

Lanlan WEI, lanlan.wei@fe.uni-lj.si www.fe.uni-lj.si