Outdoor Workplace Lighting according to CIE S 015:2005 / prEN 12464-2

Dipl.-Ing. Axel Stockmar
LCI Light Consult International
Celle, Germany

Standardisation Bodies and Lighting Societies
The current seven CIE Divisions (2006)

- Div. I Vision & Colour
- Div. II Physical Measurement of Light and Radiation
- Div. III Interior Environment and Lighting Design
- Div. IV Lighting and Signalling for Transport
- Div. V Exterior and other Lighting Applications
- Div. VI Photo-biology and Photo-chemistry
- Div. VIII Image Technology

CEN TC 169 Light and Lighting (2006)

- WG1 Basic Terms and Criteria (EN 12665)
- **WG2 Lighting of Work Places (EN 12464)**
- WG3 Emergency Lighting (EN 1838)
- WG4 Sports Lighting (EN 12193)
- WG5 Road Lighting (EN 13201)
- WG6 Tunnel Lighting (CR 14380)
- WG7 Photometry (EN 13032)
- WG8 Photobiology (EN 14255)
- WG9 Energy Performance of Buildings - Energy Requirements for Lighting (EN 14193)
Relevant CIE Publications for CIE S 015:2005

- CIE 112-1994 Glare Evaluation System for Use within Outdoor Sports and Area Lighting
- CIE 115-1995 Recommendations for the Lighting of Roads for Motor and Pedestrian Traffic
- CIE 140-2000 Road Lighting Calculations
- CIE 150-2003 Guide on the Limitations of the Effects of Obtrusive Light from Outdoor Lighting Installations
- CIE 154-2003 Maintenance of Outdoor Lighting Systems

- A.F.E. „Recommandations relatives à l´éclairage des voies publiques“
- CIBSE LG6 „The Outdoor Environment“
- DIN 5035 „Beleuchtung mit künstlichem Licht“
- ICAO „International Standards and Recommended Practices Aerodromes“
- DB 954.9103 „Beleuchtungsanlagen im gleisnahen und/oder sicherheitsrelevanten Bereich“

etc.
Lighting Design Criteria (CIE S 015:2005)

- Luminance distribution (description only)
- Illuminance levels (maintained values), uniformities, and diversities (for task areas and surroundings)
- Limitation of glare (for train drivers and passengers)
- Directionality of light (description only)
- Colour appearance and colour rendering
- Avoidance of flicker and stroboscopic effects (description only)
- Limitation of obtrusive light

Illuminances, CIE S 015:2005 (I)

- All values of illuminances in this standard are **maintained illuminances** over the task area on the reference surface which may be horizontal, vertical or inclined.
- The **task area** is defined as the partial area in the work place in which the visual task is carried out.
- For places where size and/or location of the task area are **unknown**, the area where the task **may occur** is the task area.
Illuminances, CIE S 015:2005 (II)

- The maintained illuminance of the **surrounding area** shall be related to the maintained illuminance of the task area and should provide a well-balanced luminance distribution in the field of view.

- The surrounding area is regarded as a **strip surrounding the task area in the field of view**; the width of this strip should be at least **2 m**.

<table>
<thead>
<tr>
<th>Task illuminance</th>
<th>Illuminance of surrounding areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 500 lx</td>
<td>100 lx</td>
</tr>
<tr>
<td>300 lx</td>
<td>75 lx</td>
</tr>
<tr>
<td>200 lx</td>
<td>50 lx</td>
</tr>
<tr>
<td>150 lx</td>
<td>30 lx</td>
</tr>
<tr>
<td>50 lx ≤ E_m ≤ 100 lx</td>
<td>20 lx</td>
</tr>
<tr>
<td>< 50 lx</td>
<td>no specification</td>
</tr>
</tbody>
</table>

Surrounding area is a strip surrounding the task area **within the field of view**; this strip should have a width of at least **2 m**.
Uniformity and Diversity (CIE S 015:2005)

- Illuminance uniformity U_o is defined as the ratio of minimum to average illuminance on a surface.
- The uniformity of the task area shall not be less than the values given in table 5 of CIE S 015:2005, the uniformity of the surroundings shall not be less than 0.10.
- Illuminance diversity U_d is defined as the ratio of minimum to maximum illuminance on a surface.
- The diversity is an important quality criterion for railway lighting, and shall not be less than the values specified in table 5 of CIE S 015:2005.

Illuminance Grid Size (CIE S 015:2005)

Maximum grid size (A. Stockmar):

$$p = 0.2 \cdot 5 \log d$$

p ... grid cell size (m), $p_{\text{max}} = 10$ m
d ... longer dimension of area (m) if the ratio of the longer to the shorter side is less than 2, otherwise
d ... shorter dimension of area (m)
Illuminance Grid Size (CIE S 015:2005)

Illuminance grid size as function of area dimension,
example: $d = 48 \text{ m}$, $p = 3 \text{ m}$, $n = 16$

Maintained Illuminance - Maintenance Factor,
CIE S 015:2005 (I)

- The maintained illuminance is defined as the value below which the illuminance on a specified surface is not allowed to fall.

- The lighting scheme should be designed with a maintenance factor calculated for the selected lighting equipment, space environment and specified maintenance schedule.

- The maintenance factor depends on the maintenance characteristics of the lamp and control gear, the luminaire, the environment and the maintenance programme.
Maintained Illuminance - Maintenance Factor, CIE S 015:2005 (II)

According to CIE Publication 154-2003 „The Maintenance of Outdoor Lighting Systems“

The **maintenance factor** is defined as the ratio of the luminance / illuminance produced by the lighting system after a certain period to the luminance / illuminance produced by the same system when new.

Determination of Maintenance Factor (I)

\[MF = LLMF \cdot LSF \cdot LMF (\cdot SMF) \]

MF **Maintenance Factor**

LLMF **Lamp Lumen Maintenance Factor**

LSF **Lamp Survival Factor**

LMF **Luminaire Maintenance Factor**

SMF **Surface Maintenance Factor**
Determination of Maintenance Factor (II)

Influencing factors (positive)

- Application of lamps with modest luminous flux depreciation (dependent on hours of operation)
- Application of luminaires with modest tendency to accumulate dirt
- (Application of electronic control gear)
- (Few annual lamp operating hours)
- Few switching cycles
- Short cleaning and/or maintenance periods, spot and group replacement of lamps
- Clean environment (airborne dirt)
- Modest tendency to accumulate dirt and/or modest degradation of reflecting surfaces

Determination of Maintenance Factor (III)

Influencing factors (negative)

- Application of lamps with high luminous flux depreciation (dependent on hours of operation)
- Application of luminaires with strong tendency to accumulate dirt
- Application of poor quality control gear
- Many annual lamp operating hours
- (Numerous switching cycles)
- Long cleaning and/or maintenance periods, group replacement of lamps only
- Polluted environment (airborne dirt)
- Strong tendency to accumulate dirt and/or high degradation of reflecting surfaces
Colour Appearance and Colour Rendering, CIE S 015:2005 (I)

<table>
<thead>
<tr>
<th>Colour appearance</th>
<th>Correlated colour temperature T_{cp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm</td>
<td>below 3300 K</td>
</tr>
<tr>
<td>Intermediate</td>
<td>3300 K to 5300 K</td>
</tr>
<tr>
<td>Cool</td>
<td>above 5300 K</td>
</tr>
</tbody>
</table>

Minimum values of the **general colour rendering index** for distinct areas, tasks or activities are given in the schedule of lighting requirements (e.g. $R_a \geq 20$, also ≥ 40 or ≥ 60)

Colour Appearance and Colour Rendering, CIE S 015:2005 (II)

CIE test colours for the evaluation of the general colour rendering index R_a (1-8) and the special colour rendering indices (8-14)
CIE Glare Rating Method (I)

Calculation formula according to CIE 112-1994 „Glare Evaluation System for Use within Outdoor Sports and Area Lighting“:

\[GR = 27 + 24 \cdot \log \left(\frac{L_{vl}}{L_{ve}^{0.9}} \right) \]

- \(L_{vl} \) ... Veiling luminance caused by the lighting installation
- \(L_{ve} \) ... Equivalent veiling luminance of the environment

CIE Glare Rating Method (II)

Observers at grid positions at 45° intervals radially about the grid points (CIE S015:2005)
CIE Glare Rating Method (III)

Application dependent observer positions and viewing directions every 15° from -30° to +30°:
1) roof of covered platform, 2) open platform

Limitation of Obtrusive Light, Definitions as given in CIE 150:2003

- **Obtrusive Light**: Light, outside the area to be lit, which, because of quantitative, directional or spectral attributes in a given context, gives rise to annoyance, discomfort, distraction or a reduction in the ability to see essential information.

- **Curfew**: The time after which stricter requirements (for the control of obtrusive light) will apply; often a condition of use of lighting applied by a government controlling authority, e.g. the local government.
Limitation of Obtrusive Light, Environmental Lighting Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Surrounding</th>
<th>Lighting Environment</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Natural</td>
<td>Intrinsically dark</td>
<td>National parks, protected sides</td>
</tr>
<tr>
<td>E2</td>
<td>Rural</td>
<td>Low district brightness</td>
<td>Industrial or residential rural areas</td>
</tr>
<tr>
<td>E3</td>
<td>Suburban</td>
<td>Medium district brightness</td>
<td>Industrial or residential suburbs</td>
</tr>
<tr>
<td>E4</td>
<td>Urban</td>
<td>High district brightness</td>
<td>Town centres, commercial areas</td>
</tr>
</tbody>
</table>

Problem: Which zone is to be applied if location of interest for the assessment differs from zone where the lighting is installed?

Limits of Obtrusive Light for Outdoor Lighting, CIE S 015:2005

- Maximum vertical illuminance (E_v) on properties (for pre- and post-curfew hours)
- Maximum luminous intensities of individual light sources into potentially obtrusive directions (for pre- and post-curfew hours)
- Maximum upward light ratios (ULR)
- Maximum average luminances of building facades (L_b) and signs (L_s)
- Maximum threshold increments (TI) for users of nearby roads
CIE 150:2003 Methodology (I), Maximum Obtrusive Light permitted

<table>
<thead>
<tr>
<th>Zone</th>
<th>Illuminance on Properties E_v in lx</th>
<th>Luminaire Intensity I in cd</th>
<th>Upward Light Ratio ULR in %</th>
<th>Luminance L_b in cd/m²</th>
<th>L_s in cd/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-curfew</td>
<td>Post-curfew</td>
<td>Pre-curfew</td>
<td>Post-curfew</td>
<td>Building facade</td>
</tr>
<tr>
<td>E1</td>
<td>2</td>
<td>0</td>
<td>2500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E2</td>
<td>5</td>
<td>1</td>
<td>7500</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>E3</td>
<td>10</td>
<td>2</td>
<td>10000</td>
<td>1000</td>
<td>15</td>
</tr>
<tr>
<td>E4</td>
<td>25</td>
<td>5</td>
<td>25000</td>
<td>2500</td>
<td>25</td>
</tr>
</tbody>
</table>

Problem: Values are given for the *summation* of all contributing lighting installations. How to apply these values if lighting systems are installed *one after each other*?

CIE 150:2003 Methodology (II), Maximum Values of Threshold Increments

<table>
<thead>
<tr>
<th>Road classification</th>
<th>No road lighting</th>
<th>M5</th>
<th>M4/M3</th>
<th>M2/M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold increment (TI)</td>
<td>15% based on adaptation luminance of 0.1 cd/m²</td>
<td>15% based on adaptation luminance of 1.0 cd/m²</td>
<td>15% based on adaptation luminance of 2.0 cd/m²</td>
<td>15% based on adaptation luminance of 5.0 cd/m²</td>
</tr>
</tbody>
</table>

Problems: Road classification is not in line with EN 13201-2. Lighting installations could increase veiling luminance at the observer's eye without necessarily increasing the average luminance in the field of view.
- General circulation areas at outdoor workplaces
- Airports
- Building sites
- Canals, locks and harbours
- Farms
- Fuel filling stations
- Industrial sites and storage areas
- Off-shore gas and oil structures
- Parking areas
- Petrochemical and other hazardous industries
- Power, electricity, gas and heat plants
- Railways and tramways (5.12)
- Saw mills
- Shipyards and docks
- Water and sewage plants

Avoid glare for vehicle driver, special attention is to be paid to the edge of the platform.
Lighting Requirements for Areas, Tasks and Activities II (table 5.12 of CIE S 015:2005)

<table>
<thead>
<tr>
<th>No.</th>
<th>Type of area, task or activity</th>
<th>(E_{m})</th>
<th>(U_{o})</th>
<th>(U_{d})</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12.11</td>
<td>Railways, lines, terraces</td>
<td>70 0.45 40</td>
<td>50 0.45 40</td>
<td>Avoid glare for vehicle drivers</td>
<td></td>
</tr>
<tr>
<td>5.12.12</td>
<td>Railways, handling areas</td>
<td>10 0.45 40</td>
<td>50 0.45 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.13</td>
<td>Coupling area</td>
<td>10 0.45 40</td>
<td>50 0.45 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.14</td>
<td>Sheds, small and medium-sized stations</td>
<td>10 0.45 40</td>
<td>50 0.45 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.15</td>
<td>Open platforms, inter-city services</td>
<td>10 0.45 40</td>
<td>50 0.45 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.16</td>
<td>Covered platforms, suburban or regional trains or inter-city services with small number of passengers</td>
<td>10 0.45 40</td>
<td>50 0.45 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.17</td>
<td>Covered platforms, short distance operations</td>
<td>10 0.45 40</td>
<td>50 0.45 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.18</td>
<td>Covered platforms, inter-city services</td>
<td>100 0.50 40</td>
<td>100 0.50 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.19</td>
<td>Stairs, lobbies</td>
<td>100 0.50 40</td>
<td>100 0.50 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.20</td>
<td>Covered platforms, long distance operations</td>
<td>100 0.50 40</td>
<td>100 0.50 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12.21</td>
<td>Inter-roto brake</td>
<td>100 0.50 40</td>
<td>100 0.50 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Passenger Volume Dependent Lighting Requirements for Platforms (CIE S 015:2005)

<table>
<thead>
<tr>
<th>Type of Platform</th>
<th>(E_{m})</th>
<th>(U_{o})</th>
<th>(U_{d})</th>
<th>(G_{R_{L}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open platforms, rural and local trains, small number of passengers</td>
<td>15 lx</td>
<td>0.25</td>
<td>0.125</td>
<td>50</td>
</tr>
<tr>
<td>Open platforms, suburban and regional trains with large number of passengers or inter-city services with small number of passengers</td>
<td>20 lx</td>
<td>0.40</td>
<td>0.20</td>
<td>45</td>
</tr>
<tr>
<td>Open platforms, inter-city services</td>
<td>50 lx</td>
<td>0.40</td>
<td>0.20</td>
<td>45</td>
</tr>
<tr>
<td>Covered platforms, suburban or regional trains or inter-city services with small number of passengers</td>
<td>50 lx</td>
<td>0.40</td>
<td>0.20</td>
<td>45</td>
</tr>
<tr>
<td>Covered platforms, inter-city services</td>
<td>100 lx</td>
<td>0.50</td>
<td>0.33</td>
<td>45</td>
</tr>
</tbody>
</table>

Illuminance level as function of passenger volume
Outdoor Workplace Lighting according to CIE S 015:2005 / prEN 12464-2

End